Radiation Safety: Oxygen-15 gas

Learning Tips

- 1. Click the **Next** and **Previous** arrows below to navigate ule
- 2. Check out the **FAQ** tab to help answer any questions you may have.
- 3. This module will take you approximately 25 minutes to complete.
- 4. Contact the Radiation Safety Officer for any inquires or feedback regarding any radiation safety training module.

Radiation Safety: Oxygen-15 gas

- Prerequisite learning on LearningEdge:
 - Basic Level Isotope Safety
 - Radiation Safety for Isotope Handler's
- All staff (PIs, students, animal health technicians, PET/MRI technologists etc.)
 involved with O-15 gas experiments must complete this online module and go
 through the O-15 gas SOP with the RSO
- Staff will be approved by the RSO for work with O-15 gas after these two criteria have been met

Review: Protons and Positron Radiation

- During radioactive decay, positron emission (beta decay) occurs when a proton inside the nucleus of O-15 is converted into a neutron resulting in the emission of a positron (green) particle
 - A positron is an electron with a unit-positive charge

- Common Isotope Used and its Specific Energy
 - C-11 = 960 keV
 - F-18 = 635 keV
 - N-13= 1190 keV
 - Zr-89 = 909 keV
 - O-15 = 1735 keV

• The emitted positron travels a short distance before it combines with a free electron in an annihilation reaction (see next page)

Review: Protons and Positron Radiation Cont'd

- Annihilation reactions are the result of a collision between the emitted positron and an always present electron (see diagram below)
- The masses of both positron and electron are completely annihilated releasing a total energy of 1.022 MeV
- The 1022 keV energy is released in the form of two 511 keV energy photons that radiate at exactly opposite directions (180 degrees) of one another
- Annihilation occurs on the average every 10⁻⁹ seconds
 - Positron emitting radioactive atoms have short half lives because of this rapid reaction.
- Since these annihilation photon energies are considered very high (511 keV), the radiation can penetrate deep into thick dense material (e.g. deep into a person's torso)
 - Dense metal is required to attenuate this energy (e.g. tungsten).

About Oxygen-15

- O-15 is a radioisotope of oxygen, frequently used in PET imaging
- O-15 can be used in PET as a liquid for injection or as a gas for inhalation
- O-15 gas is produced in the cyclotron through deuteron bombardment of nitrogen-14: $^{14}N(d,n)^{15}O$
- O-15 decays by positron emission with a *half life of 122 seconds*

$${}^{15}_{8}O \longrightarrow {}^{15}_{7}N + {}^{0}_{11}\beta$$

Radiation Safety of Gases

- Due to gaseous nature of the radioactivity, extra vigilance must be taken with respect to radiation safety
- Radioactive gas is difficult, if not impossible to detect by human senses due to its colourless and usually odourless nature
- Requires a different set of radiation safety procedures than injectable radioisotopes to prevent internal radiation exposure by inhalation

Experimental Procedure

- O-15 gas is produced in the cyclotron
- The gas is transferred from the cyclotron to the PET/MRI Suite (B5-233c) using a pressurized metal line that runs along the outside of the building.
- The subject will inhale the O-15 gas while undergoing a PET/MRI scan
- Exhaled radioactive CO₂ from the subject will be captured in an air tank in the PET/MRI Equipment room (B5-233e) to decay

Radiation Safety

- The CO₂ expired air tank will catch the exhaled radioactive air from the subject
- In the case of a leak in the tubing in the PET/MRI suite from the subject to the expired air tank, it is possible that some radioactive gas will leak out into room air
- To prevent unnecessary exposure to staff/public from leaked O-15, an SOP has been created with step-by-step instructions on how to conduct the experiment.
 Sections include:
 - Pre O-15 Gas Delivery
 - Receipt and Administration of O-15 Gas
 - Post O-15 Gas Administration
 - Procedures for Unusual Incidences
- Adhering to this SOP will drastically reduce the potential of unnecessary radioactive exposure to staff/public during this experiment

What's next

- Contact the Lawson RSO (Charis Johnson-Antaran) with proof of completion of LearningEdge O-15 module.
 - RSO email: charis.johnsonantaran@lawsonresearch.com
- RSO will send you the Safe Delivery and Administration of O-15 Gas Procedure.
- Once you have reviewed the above procedure, the RSO will meet with you to discuss any questions/concerns.
- You and the RSO will sign a log sheet acknowledging agreement and understanding of the Safe Delivery and Administration of O-15 Gas Procedure.
- You are approved to work with O-15 gas